Titanium particle-induced osteogenic inhibition and bone destruction are mediated by the GSK-3β/β-catenin signal pathway

نویسندگان

  • Ye Gu
  • Zhirong Wang
  • Jiawei Shi
  • Liangliang Wang
  • Zhenyang Hou
  • Xiaobin Guo
  • Yunxia Tao
  • Xiexing Wu
  • Wei Zhou
  • Yu Liu
  • Wen Zhang
  • Yaozeng Xu
  • Huilin Yang
  • Feng Xue
  • Dechun Geng
چکیده

Wear debris-induced osteogenic inhibition and bone destruction are critical in the initiation of peri-prosthetic osteolysis. However, the molecular mechanism underlying this phenomenon is poorly understood. In this study, we analyzed the involvement of the GSK-3β/β-catenin signal pathway, which is important for bone formation in this pathological condition. We established a titanium (Ti) particle-stressed murine MC3T3-E1 cell culture system and calvariae osteolysis model to test the hypothesis that Ti particle-induced osteogenic inhibition and bone destruction are mediated by the GSK-3β/β-catenin signal pathway. Our findings showed that Ti particles reduced osteogenic differentiation induced by osteogenesis-related gene expression, alkaline phosphatase activity and matrix mineralization, as well as pSer9-GSK-3β expression and β-catenin signal activity. Downregulation of GSK-3β activity attenuated Ti particle-induced osteogenic inhibition, whereas the β-catenin inhibitor reversed this protective effect. Moreover, the GSK-3β/β-catenin signal pathway mediated the upregulation of RANKL and downregulation of OPG in Ti particle-stressed MC3T3-E1 cells. In addition, our in vivo results showed that Ti particles induced bone loss via regulating GSK-3β and β-catenin signals. Based on these results, we concluded that the GSK-3β/β-catenin signal pathway mediates the adverse effects of Ti particles on osteoblast differentiation and bone destruction, and can be used as a potential therapeutic target for the treatment of peri-prosthetic osteolysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs

Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...

متن کامل

Expression of Gsk-3β And β-Catenin Proteins in the PMSG Stimulated Rat Ovary

Purpose: The ovary is an example of a developing tissue in which developmental prosses occur throughout reproductive life. We investigate the expression of GSK-3β and β-catenin- Wnt pathway molecules- in the rat ovary during follicular development. Materials and Methods: To induce follicular growth and development, 23 days old immature female rats were injected with 10 IU of PMSG. Forty and for...

متن کامل

Icariin attenuates titanium-particle inhibition of bone formation by activating the Wnt/β-catenin signaling pathway in vivo and in vitro

Wear-debris-induced periprosthetic osteolysis (PIO) is a common clinical condition following total joint arthroplasty, which can cause implant instability and failure. The host response to wear debris promotes bone resorption and impairs bone formation. We previously demonstrated that icariin suppressed wear-debris-induced osteoclastogenesis and attenuated particle-induced osteolysis in vivo. W...

متن کامل

miR-346 Regulates Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by Targeting the Wnt/β-Catenin Pathway

Osteogenic differentiation of human mesenchymal stem cells (hMSCs) is regulated by multiple transcription factors and signaling molecules. However, the molecular mechanisms underlying this process remain to be fully elucidated. MicroRNAs (miRNAs) act as key regulators in various biological processes by mediating mRNA degradation or translational inhibition of target genes. In this study, we rep...

متن کامل

The Effect of Mesenchymal Stem Cell and Aerobic Exercise on the Expression of β-catenin and GSK-3β Genes in Heart Tissue of Rats in the Experimental Model of Knee Osteoarthritis

Introduction: Proliferation has long been the main source of mesenchymal stem cells (MSCs) in tissue repair , cell therapy and tissue engineering strategies. On the other hand, regular exercise as part of a person’s daily routine may help manage pathological conditions. The aim of this study was to investigate the effect of mesenchymal stem cell injection and aerobic exercise on the expression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017